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1 Introduction

The search for supersymmetry (SUSY) [1, 2] is among the most important tasks at cur-

rent and future colliders. Squarks and gluinos, the coloured supersymmetric particles, are

expected to be produced most copiously in hadronic collisions. Searches at the proton-

antiproton collider Tevatron with a centre-of-mass energy of
√

S = 1.96 TeV have placed

lower limits on squark and gluino masses in the range of 300-400 GeV [3, 4]. The proton-

proton collider LHC with
√

S = 14 TeV design energy will extend the range of sensitivity

to squarks and gluinos with masses up to about 3TeV [5–7].
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In the minimal supersymmetric extension of the Standard Model (MSSM) [8, 9] with

R-parity conservation, squarks and gluinos are pair-produced in collisions of two hadrons

h1 and h2:

h1h2 → q̃q̃ , q̃ ¯̃q , q̃g̃ , g̃g̃ + X . (1.1)

In eq. (1.1) and throughout the rest of this paper we suppress the chiralities of the squarks

q̃ = (q̃L, q̃R) and do not explicitly state the charge-conjugated processes. We include

squarks q̃ of any flavour except for top squarks. The production of top squarks [10] has to

be considered separately since the strong Yukawa coupling between top quarks, top squarks

and Higgs fields gives rise to potentially large mixing effects and mass splitting [11].

Accurate theoretical predictions for inclusive cross sections are crucial to derive exclu-

sion limits for squark and gluino masses [3, 4] and, in the case of discovery, can be used to

determine sparticle masses [12] and properties [13]. The cross sections for the squark and

gluino pair-production processes (1.1) are known at next-to-leading order (NLO) in SUSY-

QCD [14–16]. Electroweak corrections to the O(α2
s ) tree-level production [17–20] and the

electroweak Born production channels of O(ααs) and O(α2) [21, 22] are significant for the

pair production of SU(2)-doublet squarks q̃L and at large invariant masses in general, but

they are moderate for total cross sections summed over all squark species.

The NLO SUSY-QCD corrections to squark and gluino hadroproduction reduce the

renormalization- and factorization-scale dependence of the predictions. In general these

corrections also significantly increase the cross section with respect to the Born predic-

tions [23–25] if the renormalization and factorization scales are chosen close to the average

mass of the pair-produced sparticles. A significant part of these large corrections can be

attributed to the threshold region where the partonic centre-of-mass energy is close to the

kinematic threshold for producing massive particles. In this region the NLO corrections

are dominated by the contributions due to soft gluon emission off the coloured particles in

the initial and final state and by the Coulomb corrections due to the exchange of gluons

between the massive sparticles in the final state. The soft-gluon corrections can be taken

into account to all orders in perturbation theory by means of threshold resummation.

Previous work has addressed the soft-gluon resummation for squark-antisquark and

gluino-gluino production at next-to-leading-logarithmic (NLL) accuracy [26, 27]. For the

squark-antisquark production process the dominant contribution to the next-to-next-to-

leading order (NNLO) correction coming from the resummed cross section at next-to-

next-to-leading-logarithmic (NNLL) level has been studied in [28]. Moreover, a formalism

allowing for the resummation of soft and Coulomb gluons in the production of coloured

sparticles has been presented in [29, 30], and bound state effects have been studied for

gluino-pair production in ref. [31]. Additionally, threshold resummation for single colour-

octet scalar production at the LHC has been investigated in [32].

In this work, we present the analytical components needed to perform NLL resumma-

tion for squark-squark and squark-gluino pair-production. In addition, we provide numer-

ical predictions for the entire set (1.1) of pair-production processes of coloured sparticles

at the Tevatron and the LHC.

The paper is structured as follows. In section 2 we review the formalism of soft-gluon

resummation. The calculation of the one-loop soft anomalous dimension matrices for the

– 2 –
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q̃q̃ and q̃g̃ production processes is discussed in section 3. We present numerical results

for squark and gluino production at the Tevatron and the LHC in section 4 and conclude

in section 5. A more detailed description of certain aspects of our calculation and some

explicit formulae that enter the expressions for the resummed cross sections are collected

in the appendices.

2 Soft-gluon resummation

In this section we review the formalism of threshold resummation for the production of

a pair of coloured massive particles. Since the corresponding theoretical expressions have

already been discussed in detail in ref. [27], we shall be brief.

The inclusive hadroproduction cross section σh1h2→kl for two massive SUSY particles

k and l, where k, l can be a squark (q̃), antisquark (¯̃q) or gluino (g̃), can be written in terms

of its partonic version σij→kl as

σh1h2→kl

(

ρ, {m2}
)

=
∑

i,j

∫

dx1dx2dρ̂ δ

(

ρ̂ − ρ

x1x2

)

× fi/h1
(x1, µ

2)fj/h2
(x2, µ

2)σij→kl

(

ρ̂, {m2}, µ2
)

, (2.1)

where {m2} denotes all masses entering the calculations, i, j are the initial parton flavours,

fi/h1
and fj/h2

the parton distribution functions, and µ is the common factorization and

renormalization scale. The hadronic threshold for inclusive production of two final-state

particles with masses m3 and m4 corresponds to a hadronic center-of-mass energy squared

that is equal to S = (m3 + m4)
2. Thus we define the threshold variable ρ, measuring the

distance from threshold in terms of energy fraction, as

ρ =
(m3 + m4)

2

S
.

The partonic equivalent of this threshold variable is defined as ρ̂ = ρ/(x1x2), where x1,2

are the momentum fractions of the partons. This is a generalized version of the threshold

variable used e.g. in ref. [27]. It accounts for unequal masses of the pair-produced particles

in the final state, making it applicable to the case of squark-gluino production.

In the threshold region, the most dominant contributions to the higher-order QCD

corrections due to soft gluon emission have the general form1

αn
s logmβ2 , m ≤ 2n with β2 ≡ 1 − ρ̂ = 1 − (m3 + m4)

2

s
, (2.2)

where s = x1x2S is the partonic center-of-mass energy squared. The resummation of the

soft-gluon contributions is performed after taking a Mellin transform (indicated by a tilde)

of the cross section,

σ̃h1h2→kl

(

N, {m2}
)

≡
∫ 1

0
dρ ρN−1 σh1h2→kl

(

ρ, {m2}
)

(2.3)

=
∑

i,j

f̃i/h1
(N + 1, µ2)f̃j/h2

(N + 1, µ2)σ̃ij→kl

(

N, {m2}, µ2
)

.

1See section 3 for more discussion on the form of a threshold variable in the case of unequal masses.
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The logarithmically enhanced terms are then of the form αn
s logm N , m ≤ 2n, with the

threshold limit β → 0 corresponding to N → ∞. The resummed cross section takes the

schematic form [33, 34]

σ̃h1h2→kl(N) = exp
[

Lg1(αsL) + g2(αsL) + . . .
]

× P (αs) , (2.4)

in which all dependence on the large logarithm L = log N occurs in the exponent, and no

term in the perturbative series P (αs) grows with increasing N . Keeping only the g1 term

constitutes the leading logarithmic (LL) approximation, including also the g2 term is called

the next-to-leading logarithmic (NLL) approximation, etc. Up to NLL accuracy it suffices

to keep the lowest-order term in P .

The all-order summation of such logarithmic terms depends on the near-threshold

factorization of the cross sections into functions that each capture the effects of classes

of radiation effects: hard, collinear (including soft-collinear), and wide-angle soft radia-

tion [33–39]

σ̃ij→kl

(

N, {m2}, µ2
)

= ∆i(N + 1, Q2, µ2)∆j(N + 1, Q2, µ2)

×
∑

IJ

Hij→kl,JI

(

N, {m2}, µ2
)

S̄ij→kl,IJ

(

Q/(Nµ), µ2
)

, (2.5)

where we have introduced the hard scale Q2 = (m3 + m4)
2. Before we comment on

each function separately, we recall that soft radiation is coherently sensitive to the colour

structure of the hard process from which it is emitted [35, 36, 40, 41]. The various structures

are labelled by the indices I, J in a way made more precise further below.

The functions ∆i and ∆j sum the effects of the (soft-)collinear radiation from the

incoming partons. They are process-independent and do not depend on the colour struc-

tures. They contain the leading logarithmic dependence, as well as part of the subleading

logarithmic behaviour, and are listed e.g. in ref. [27].

The function Hij→kl,JI incorporates only higher-order effects of hard, off-shell partons

and therefore does not contain log N dependence. This hard function depends on the colour

representations of the external particles in the partonic process. There are usually multiple

tensors cI that can connect these colour representations, where I labels the possible tensors.

For instance, in the case of squark-antisquark (with colour indices a3, a4) production by

the annihilation of light quarks (with colour indices a1, a2) there are two colour tensors,

which may be chosen as

c1(a1, a2; a3, a4) = δa1a2δa3a4 (s−channel singlet),

c2(a1, a2; a3, a4) = T c
a1a2

T c
a3a4

(s−channel octet) . (2.6)

The hard function Hij→kl,JI is a matrix in this colour-tensor space, with the indices JI

indicating the colour structure. Note that we paired the indices in example (2.6) according

to the s-channel. Other choices are possible as well [37, 40, 41], but choosing an s-channel

basis will be convenient at threshold.

The soft function S̄ij→kl,IJ in eq. (2.5) is also a matrix in colour-tensor space, since soft

emissions mix the connecting colour tensors. This soft function is constructed [37, 41] from

– 4 –
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an eikonal cross section, which in turn is defined in terms of the square of expectation values

of products of Wilson-line operators belonging to the external particles in the process.

These Wilson lines generate to all orders the soft-gluon radiation in the process and depend

on the direction and colour representation of the corresponding external particle. To avoid

double counting with the ∆i and ∆j factors in eq. (2.5), the expectation values are divided

by the square of expectation values of the Wilson lines themselves. In this way, collinear-

soft radiation already included in the ∆i and ∆j factors is removed. What remains is a

soft function whose perturbation series takes the form αn
s logmN , m ≤ n, and therefore

contributes only at NLL accuracy.

Although the combination of the soft and collinear functions in the cross section is

gauge invariant, the functions themselves are not automatically separately gauge invariant.

The collinear functions only depend on the colour representations of the incoming partons.

Therefore the gauge dependence of the soft function cannot depend on the colour structure

of the process either. This implies that we can make the soft and collinear functions

separately gauge invariant by rescaling them with a scalar in colour-tensor space. This

rescaling has implicitly been performed in eq. (2.5), where the soft function has been

divided by
√

Ssing
īi

√

Ssing
jj̄

as indicated by the bar on S̄ij→kl,IJ . The factor Ssing
īi

is the

soft function for two incoming Wilson lines of flavour i and ī annihilating into a colour-

singlet.2 By taking the square root of such a soft function, we effectively isolate the gauge

dependence of a single line. Therefore this procedure works not only for qq̄ or gg initial

states but also for initial states that cannot annihilate into a colour-singlet, such as qg and

qq. To compensate for the division factor in the soft function, the collinear functions ∆i

and ∆j have been multiplied by the factors
√

Ssing
īi

and
√

Ssing
jj̄

respectively. Analytical

expressions for these functions given in the literature (see e.g. ref. [27]) explicitly include

this multiplicative factor.

Near threshold the soft function reduces considerably. For the inclusive cross section

and our choice of colour basis, the matrix S̄ij→kl,IJ becomes diagonal in colour-tensor space

in the threshold limit β → 0 [27]. In this limit we have (suppressing particle flavour labels)

lim
β→0

S̄IJ

(

Q/(Nµ), µ2
)

= δIJS
(0)
IJ ∆

(s)
I

(

Q/(Nµ), µ2
)

(2.7)

with

∆
(s)
I

(

Q/(Nµ), µ2
)

= exp

[ ∫ Q/N

µ

dq

q

αs(q)

π
DI

]

, (2.8)

where S
(0)
IJ is the lowest-order expression for the soft function, given by

S
(0)
IJ = tr

(

c†I cJ

)

. (2.9)

The one-loop coefficients DI are defined by

DI ≡ lim
β→0

π

αs
2Re(Γ̄II) . (2.10)

2Note that if the colour representations are 3 and 3̄ this corresponds to the Drell-Yan process. For

octets, it corresponds to Higgs production by gluon fusion.
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The values of the DI coefficients for q̃q̃ and q̃g̃ production are calculated in sec-

tion 3.4.3. The form of eq. (2.8) follows from a renormalization-group equation for

S̄IJ(Q/(Nµ)) [35, 37], with one-loop anomalous dimensions Γ̄ij→kl,IJ , often referred to

as the “soft” anomalous-dimension matrix. If the calculations are performed in the axial-

gauge with gauge vector nµ, the one-loop anomalous dimensions are given by

Γ̄IJ = ΓIJ − αs

2π

∑

p={i,j}

C2,p

(

1 − log

(

2
(vp · n)2

|n|2
)

− iπ

)

δIJ , (2.11)

where the sum is over the two incoming particles, and |n|2 = −n2 − iǫ, see ref. [40]. The

dimensionless vector vp is given by the momentum of the incoming massless particle p

multiplied by
√

2/s. The factors C2,p are either CF or CA, depending on whether p is

a quark or gluon, respectively. The subtraction exhibited in eq. (2.11) results from the

division by the factor
√

Ssing
īi

√

Ssing
jj̄

described before. The matrix ΓIJ is the anomalous

dimension matrix of the products of Wilson-line operators connected by the various possible

colour tensors mentioned earlier. More details on its calculation are given in section 3.4.

In the threshold limit the resummed partonic cross section becomes

σ̃
(res)
ij→kl

(

N, {m2}, µ2
)

=
∑

I

σ̃
(0)
ij→kl,I

(

N, {m2}, µ2
)

Cij→kl,I

(

N, {m2}, µ2
)

(2.12)

×∆i(N + 1, Q2, µ2)∆j(N + 1, Q2, µ2)∆
(s)
ij→kl,I

(

Q/(Nµ), µ2
)

,

where σ̃
(0)
ij→kl,I are the leading-order (LO) cross sections in Mellin-moment space. For the

case of q̃q̃ and q̃g̃ production we present them in appendix A. The functions Cij→kl,I are

of perturbative nature and contain information about hard contributions beyond leading

order. This information is only relevant beyond NLL accuracy and therefore we keep

Cij→kl,I = 1 in our calculations.

Having constructed the NLL cross-section in the Mellin-moment space, the inverse

Mellin transform has to be performed in order to recover the hadronic cross section

σh1h2→kl. In order to retain the information contained in the NLO cross sections [14–

16], the NLO and NLL results are combined through a matching procedure that avoids

double counting of the logarithmic terms in the following way:

σ
(NLL+NLO matched)
h1h2→kl

(

ρ, {m2}, µ2
)

= σ
(NLO)
h1h2→kl

(

ρ, {m2}, µ2
)

(2.13)

+
∑

i,j=q,q̄,g

∫

CT
ρ−N f̃i/h1

(N + 1, µ2)f̃j/h2
(N + 1, µ2)

×
[

σ̃
(res)
ij→kl

(

N, {m2}, µ2
)

−σ̃
(res)
ij→kl

(

N, {m2}, µ2
)

|
(NLO)

]

.

We adopt the “minimal prescription” of ref. [42] for the contour CT of the inverse Mellin

transform in eq. (2.13). In order to use standard parametrizations of parton distribution

functions in x-space we employ the method introduced in ref. [43].

– 6 –
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3 Soft anomalous dimensions and Born cross sections for q̃q̃ and q̃g̃ pro-

duction

3.1 Kinematics

To set the stage for the discussion of the soft anomalous dimensions we first introduce the

relevant kinematical definitions that are used in the calculation. We consider the following

generic process

i(a1, p1)j(a2, p2) → k(a3, p3)l(a4, p4) , (3.1)

where the colour indices ai and the momenta of the particles pi are given in parentheses. In

those cases where a final-state squark features in the process, summation over both squark

chiralities (q̃
L

and q̃
R
) and all possible squark flavours is implied, the latter being restricted

by the choice of initial-state quark flavours. For the processes investigated here, i.e. squark-

squark (kl = q̃q̃) and squark-gluino (kl = q̃g̃) production, top-squark final states are not

possible since top quarks are excluded as initial-state partons. In view of the absence of

top-squark final states, all squark-flavour and chirality states are considered to be mass

degenerate with mass mq̃. The gluino mass is denoted by mg̃.

All analytical results presented in section 3 are derived for a general SU(N
C
)-theory,

with N
C

the number of colours. This means that the colour indices ai for gluons and gluinos

can take N2
C
−1 different values, since these particles are in the adjoint representation. For

(s)quarks, which are in the fundamental representation, the colour indices are N
C
-valued.

The particle momenta featuring in the generic process (3.1) obey the on-shell conditions

p2
1 = p2

2 = 0, p2
3 = m2

3 and p2
4 = m2

4. For the kinematical description of the reactions the

standard Mandelstam invariants

s = (p1 + p2)
2 , t = (p1 − p3)

2 and u = (p1 − p4)
2 (3.2)

are used. In the centre-of-mass frame of the final-state particles the absolute value of the

final-state momenta can then be written as

|~p3|cm = |~p4|cm =
1

2
κβ

√
s , (3.3)

with β =
√

1 − (m3 + m4)2/s defined in eq. (2.2) and

κ ≡
√

1 − (m3 − m4)2

s
. (3.4)

The presence of the factor κ is special to the case of unequal masses. As eq. (3.3) shows,

it occurs quite naturally in matrix-element expressions for the processes we consider in this

study. We could have defined the variable β′ = κβ and taken moments with respect to

this variable. Instead we have opted to use the variable β in our calculations in order to

facilitate convolutions underlying the resummation. Because log β′ = log β+log κ, choosing

β′ would have resulted in different subleading logarithmic terms. To NLL accuracy these

differences in the expressions for the resummed partonic cross sections are cancelled by

different terms arising from the convolutions.

– 7 –
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In order to present the results for the leading-order partonic cross sections it is helpful

to introduce two more shorthand notations:

m2
+ ≡ m2

g̃ + m2
q̃ and m2

− ≡ m2
g̃ − m2

q̃ . (3.5)

3.2 Colour bases in the s-channel

As discussed in section 2, colour correlations need to be taken into account once NLL

soft-gluon resummation is performed for processes involving pair-production of coloured

particles. To this end an appropriate colour basis has to be chosen. We have opted to use

an s-channel colour basis, which traces the colour flow through the s-channel and has the

virtue of rendering the anomalous dimension matrices diagonal at threshold [26, 27, 29, 41].

Since we are dealing with two coloured particles in both initial and final state, the s-

channel basis is obtained by performing an s-channel colour decomposition of the reducible

two-particle product representations into irreducible ones. For squark-squark and squark-

gluino production this amounts to the following decompositions in SU(3):

qq → q̃q̃ : 3 ⊗ 3 = 3̄ ⊕ 6 ,

qg → q̃g̃ : 3 ⊗ 8 = 3 ⊕ 6̄⊕ 15 , (3.6)

where the product representations apply to both the initial and final state. In a general

SU(N
C
)-theory the dimensions of the various representations are of course different, but

the number of base tensors for these two processes remains the same.

An economic way to construct the s-channel colour bases for squark-squark and squark-

gluino production is to start with an arbitrary complete colour basis of the considered

process in terms of which the s-channel base tensors cI(a1, a2; a3, a4) can be expressed.

Then the s-channel basis can be obtained by simply requiring that a particular base tensor

is orthogonal to all other base tensors and projects on itself when contracted in s-channel:

∑

b,b′

cI(a1, a2; b, b
′)cI′(b, b

′; a3, a4) = ZδII′cI(a1, a2; a3, a4) , (3.7)

where Z is an arbitrary normalization constant. A similar procedure was found by the

authors of ref. [29] on the basis of an analysis in terms of Clebsch-Gordon coefficients. This

projective construction of the s-channel base tensors constitutes a direct way of obtain-

ing explicit implementations of the irreducible representations on the right-hand side of

eq. (3.6). The minimal requirement for the projective method to work is that the particles

in the initial state must be in the same representations as those in the final state, as follows

directly from the fact that the labels of the initial state are contracted with those of the

final state in eq. (3.7). This is indeed the case for both the squark-squark and squark-gluino

production processes. An example of the calculation of the s-channel colour basis for the

qq → q̃q̃ process is given in appendix B.

In order to present the s-channel base tensors in the subsequent text, we will need

the following SU(N
C
)-objects: the singlet colour structures δab, where a and b belong

to particles in either the adjoint or the fundamental representation, the generators of the

fundamental representation T c
ab, the structure constants fabc and the symmetric forms dabc.
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3.3 Leading-order partonic cross sections

Having defined all necessary ingredients, we can now present the results for the colour-

decomposed q̃q̃ and q̃g̃ partonic cross sections at LO. These partonic cross sections are

averaged over initial-state spin and colour. The colour-decomposed LO cross sections for

the qq̄ → q̃ ¯̃q, gg → q̃ ¯̃q, qq̄ → g̃g̃ and gg → g̃g̃ processes, together with their Mellin-moment

transforms, can be found in ref. [27].

3.3.1 Squark-squark production

We consider the process

qf1(a1, p1)qf2(a2, p2) → q̃(a3, p3)q̃(a4, p4) , (3.8)

where the flavours of the initial-state quarks are indicated by f1, f2 and all external particles

are in the fundamental representation of SU(N
C
). The method described in section 3.2 to

obtain a suitable s-channel colour basis yields the following two colour tensors:

cqq
1 = δa1a4δa2a3 − δa1a3δa2a4 and cqq

2 = δa1a4δa2a3 + δa1a3δa2a4 . (3.9)

The dimensions of the representations spanned by these two base tensors are given by

dim(Rqq
1 ) = 1

2N
C
(N

C
− 1) and dim(Rqq

2 ) = 1
2N

C
(N

C
+ 1). In the SU(3) case this basis

coincides up to normalization factors with the base tensors given in ref. [29] for the 3̄ and 6

representations. The decomposition of the LO partonic squark-pair cross section in terms

of the base tensors (3.9) is given by

σ
(0)
qq→q̃q̃,1 =

πα2
s (N

2
C
− 1)(N

C
+ 1)

4N3
C
s

[

2m2
g̃

2m2
− + s

L1δf1f2 −
2m2

− + s

s
L1 −

2m4
− + sm2

g̃

m4
− + sm2

g̃

β

]

,

σ
(0)
qq→q̃q̃,2 =

πα2
s (N

2
C
− 1)(N

C
− 1)

4N3
C
s

[ −2m2
g̃

2m2
− + s

L1δf1f2 −
2m2

− + s

s
L1 −

2m4
− + sm2

g̃

m4
− + sm2

g̃

β

]

,

with

L1 ≡ log

(

s + 2m2
− − sβ

s + 2m2
− + sβ

)

.

The quantities β and m2
− are defined in eqs. (2.2) and (3.5), using m3 = m4 = mq̃. The

occurrence of the Kronecker-delta δf1f2 reflects the fact that for equal-flavoured initial-state

quarks extra diagrams contribute. In appendix A we present results for the Mellin-moment

transforms of these colour-decomposed LO cross sections.

3.3.2 Squark-gluino production

At the partonic level the q̃g̃ production process is given by

q(a1, p1)g(a2, p2) → q̃(a3, p3)g̃(a4, p4) . (3.10)

The initial and final state of this process involves both a particle in the fundamental rep-

resentation (q or q̃) and a particle in the adjoint representation (g or g̃). For the s-channel

– 9 –
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colour decomposition the following three base tensors are used:

cqg
1 =

(

T a4T a2
)

a3a1
,

cqg
2 =

N
C
− 2

N
C

δa2a4δa1a3 − 2dca4a2T
c
a3a1

+ 2
N

C
− 2

N
C
− 1

(T a4T a2)a3a1 ,

cqg
3 =

N
C

+ 2

N
C

δa2a4δa1a3 + 2dca4a2T
c
a3a1

− 2
N

C
+ 2

N
C

+ 1
(T a4T a2)a3a1 . (3.11)

The dimensions of the representations spanned by these three base tensors are given by

dim(Rqg
1 ) = N

C
, dim(Rqg

2 ) = 1
2N

C
(N

C
+1)(N

C
−2) and dim(Rqg

3 ) = 1
2N

C
(N

C
−1)(N

C
+ 2).

In the SU(3) case this basis coincides up to normalization factors with the base tensors

given in ref. [29] for the 3, 6̄ and 15 representations. The decomposition of the LO partonic

squark-gluino cross section in terms of the base tensors (3.11) is given by

σ
(0)
qg→q̃g̃,1 =

α2
sπ

(N2
C
− 1)s

[(

2m2
g̃m

2
−

s2
− 2m4

− + s2 + 2m2
−s

2s2
N2

C

)

L2

+
m2

−

s

(

m2
− − s

sN2
C

+
2m2

q̃

s

)

L3 −
(

7m2
− + 3s

4s
N2

C
− 3m2

− + s

2s
+

7m2
− − s

4N2
C
s

)

κβ

]

,

σ
(0)
qg→q̃g̃,2 =

α2
sπ(N

C
− 2)

(N
C
− 1)s

[

2m2
−(m2

+ − s) − s2

4s2
L2 +

m2
−(m2

+ − s)

2s2
L3 −

m2
−

s
κβ

]

,

σ
(0)
qg→q̃g̃,3 =

α2
sπ(N

C
+ 2)

(N
C

+ 1)s

[

2m2
−(m2

+ − s) − s2

4s2
L2 +

m2
−(m2

+ − s)

2s2
L3 −

m2
−

s
κβ

]

,

with

L2 = log

(

s + m2
− − κsβ

s + m2
− + κsβ

)

and L3 = log

(

s − m2
− − κsβ

s − m2
− + κsβ

)

.

The quantities β, κ and m2
± are defined in eqs. (2.2), (3.4) and (3.5), using m3 = mq̃ and

m4 = mg̃. In appendix A we present results for the Mellin-moment transforms of these

colour-decomposed LO cross sections.

3.4 The soft anomalous-dimension matrices

As we reviewed in section 2 below eq. (2.11), resummation to NLL accuracy requires the

anomalous dimensions ΓIJ of the products of Wilson-line operators connected by a base

tensor cI . To this end one must compute the UV divergences from their loop corrections,

and from these the renormalization constants ZIJ for these operators. Here we only need

the one-loop corrections. The anomalous dimensions can be computed from the residues

of the UV poles in the renormalization constants ZIJ as

ΓIJ = −αs
∂

∂αs
Resǫ→0ZIJ(αs, ǫ) . (3.12)

The relevant UV divergences occur in loop corrections to the base tensors cI [37, 41] due

to the Wilson lines. The complete first order correction to cI can be written as

∑

ij

ωijCij
IJcJ , (3.13)
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where i and j denote the eikonal lines between which the gluon is spanned, ωij is the

corresponding kinematic part of the one-loop correction, and Cij
IJ denotes how the base

tensors get mixed due to the corrections. At one-loop we can calculate the anomalous

dimensions directly from eq. (3.13)

ΓIJ = −
∑

ij

Cij
IJResǫ→0ω

ij . (3.14)

The precise form of this function depends on the colour basis chosen. The eikonal integrals

that constitute the ωij can be found in ref. [41], except for the unequal-mass case that

we need for squark-gluino production. The corresponding integral ω34 is discussed in

appendix D, using the Feynman rules in the eikonal approximation presented in appendix C.

In order to present the results for the soft anomalous dimensions in a compact way,

we introduce the following t- and u-channel quantities

Λ ≡ 1

2

[

T (m3) + T (m4) + U(m3) + U(m4)
]

,

Ω ≡ 1

2

[

T (m3) + T (m4) − U(m3) − U(m4)
]

, (3.15)

in terms of the t- and u-channel logarithms3

T (m) = log

(

m2 − t√
sm2

)

− 1 − iπ

2
and U(m) = log

(

m2 − u√
sm2

)

− 1 − iπ

2
. (3.16)

The one-loop soft anomalous-dimension matrices for the qq̄ → q̃ ¯̃q, gg → q̃ ¯̃q, qq̄ → g̃g̃

and gg → g̃g̃ processes have been calculated in ref. [27], where the corresponding values of

the Dij→kl,I coefficients can be found as well.4

3.4.1 Soft anomalous dimensions for squark-pair production at one-loop

In the basis (3.9) the one-loop soft anomalous-dimension matrix is given by

Γ̄qq→q̃q̃ =
αs

2π







C2(R
qq
1 )Λ − N

C
+ 1

N
C

(Lβ + 1) −(N
C

+ 1)Ω

−(N
C
− 1)Ω C2(R

qq
2 )Λ +

N
C
− 1

N
C

(Lβ + 1)






, (3.17)

with

Lβ =
1 + β2

2β

[

log

(

1 − β

1 + β

)

+ iπ

]

.

The coefficients C2(R
qq
I ) for I = 1, 2 are the quadratic Casimir invariants belonging to the

representations spanned by the base tensors cqq
I :

C2(R
qq
1 ) =

(N
C

+ 1)(N
C
− 2)

N
C

and C2(R
qq
2 ) =

(N
C
− 1)(N

C
+ 2)

N
C

. (3.18)

3Note that in the case of equal masses m3 = m4 the quantities Λ, Ω, T (m) and U(m) reduce to the

corresponding quantities Λ̄, Ω̄, T̄ and Ū defined in ref. [27].
4Note that ref. [27] uses a subtraction term different from eq. (2.11).
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3.4.2 Soft anomalous dimensions for squark-gluino production at one-loop

In the basis (3.11) the one-loop soft anomalous-dimension matrix is given by

Γ̄qg→q̃g̃ =
αs

2π

















Γ̄11,qg
4N2

C
(N

C
− 2)

(N2
C
− 1)(N

C
− 1)

Ω
4N2

C
(N

C
+ 2)

(N2
C
− 1)(N

C
+ 1)

Ω

1
2Ω Γ̄22,qg

N
C
(N

C
+ 2)

N
C

+ 1
Ω

1
2Ω

N
C
(N

C
− 2)

N
C
− 1

Ω Γ̄33,qg

















, (3.19)

with

Γ̄11,qg = C2(R
qg
1 )Λ +

[

CF +
1

CF

]

Ω −
N2

C
+ 1

2N
C

[

T (mq̃) − T (mg̃)
]

− N
C
(Lv3,v4 + 1),

Γ̄22,qg = C2(R
qg
2 )Λ +

[

CF − 1

N
C
− 1

]

Ω −
N2

C
+ 1

2N
C

[

T (mq̃) − T (mg̃)
]

− (Lv3,v4 + 1),

Γ̄33,qg = C2(R
qg
3 )Λ +

[

CF − 1

N
C

+ 1

]

Ω −
N2

C
+ 1

2N
C

[

T (mq̃) − T (mg̃)
]

+ (Lv3,v4 + 1),

(3.20)

where

Lv3,v4 =
κ2 + β2

2κβ

[

log

(

κ − β

κ + β

)

+ iπ

]

. (3.21)

The explicit derivation of eq. (3.21) is presented in appendix D. The coefficients C2(R
qg
I )

for I = 1, 2, 3 are the quadratic Casimir invariants belonging to the representations spanned

by the base tensors cqg
I :

C2(R
qg
1 ) =

N2
C
− 1

2N
C

≡ CF , C2(R
qg
2 ) =

(N
C
− 1)(3N

C
+ 1)

2N
C

and C2(R
qg
3 ) =

(N
C

+ 1)(3N
C
− 1)

2N
C

. (3.22)

3.4.3 The threshold limit

At the production threshold, where β → 0, the soft anomalous-dimension matrices be-

come diagonal by virtue of using an s-channel basis. In addition, the diagonal compo-

nents become proportional to the total colour charge of the heavy-particle pair produced

at threshold:

Dij→kl,I = −C2(R
ij
I ), (3.23)

with C2(R
ij
I ) as given in equation (3.18) for squark-pair production and in equation (3.22)

for squark-gluino production. In the SU(3) case the Dij→kl,I coefficients for squark-pair

production are given by

{Dqq→q̃q̃,I} = {−4/3,−10/3},

while for the squark-gluino production process they are

{Dqg→q̃g̃,I} = {−4/3,−10/3,−16/3}.

– 12 –



J
H
E
P
1
2
(
2
0
0
9
)
0
4
1

4 Numerical results

In this section we present numerical results for the NLL-resummed cross sections matched

with the complete NLO results for squark and gluino pair-production at both the Tevatron

(
√

S = 1.96 TeV) and the LHC (
√

S = 14 TeV). The matching is performed according to

eq. (2.13). From now on we refer to the matched cross sections as NLL+NLO cross sections.

We also compare the NLL+NLO predictions with the corresponding NLO results. The

NLO cross sections are calculated using the publicly available PROSPINO code [45], based

on the calculations presented in refs. [14–16]. As described in detail in ref. [16], the QCD

coupling αs and the parton distribution functions at NLO are defined in the MS scheme

with five active flavours. The masses of squarks and gluinos are renormalized in the on-

shell scheme, and the SUSY particles are decoupled from the running of αs and the parton

distribution functions. As already discussed in previous sections, no top-squark final states

are considered. We sum over squarks with both chiralities (q̃L and q̃R), which are taken as

mass degenerate, and include the charge-conjugated processes in the numerical predictions.

For convenience we define the average mass of the sparticle pair m ≡ (m3 + m4)/2, which

reduces to the squark and gluino mass for q̃ ¯̃q, q̃q̃ and g̃g̃ final states, respectively. The

renormalization and factorization scales µ are taken to be equal. In order to evaluate

hadronic cross sections we use the 2008 NLO MSTW parton distribution functions [44]

with the corresponding αs(M
2
Z) = 0.120. The numerical results have been obtained with

two independent computer codes.

We first discuss the scale dependence of the NLL+NLO matched cross section for the

separate processes pp̄ → q̃ ¯̃q, q̃q̃, q̃g̃, g̃g̃ + X at the Tevatron. Figure 1 shows the NLO and

NLL+NLO cross sections for mq̃ = mg̃ = m = 500 GeV as a function of the renormalization

and factorization scale µ. The value of µ is varied around the central scale µ0 = m from

µ = µ0/10 up to µ = 5µ0. As anticipated, we observe a reduction of the scale dependence

when going from NLO to NLL+NLO, in particular for g̃g̃ and q̃g̃ production (figures 1b

and 1d, respectively). In the case of squark pair-production, on the other hand, the scale

reduction due to soft-gluon resummation is moderate (see figures 1a and 1c). We note that

the gluino-pair production cross section (figure 1b) is rather small for this particular choice

of masses because of a suppression of the LO qq̄ → g̃g̃ amplitude proportional to m2
g̃ −m2

q̃

near threshold (cf. eq. (55) of ref. [16]).

At the central scale µ = µ0 = m the cross-section predictions are in general enhanced

by soft-gluon resummation. The relative K-factor KNLL − 1 ≡ σNLL+NLO/σNLO − 1 at

the Tevatron is displayed in figure 2 for squark and gluino masses in the range between

200 GeV and 600 GeV. We show results for various mass ratios r ≡ mg̃/mq̃. The soft-gluon

corrections are moderate for q̃ ¯̃q production (figure 2a), but reach values up to 27%, 29% and

60% for g̃g̃, q̃q̃ and q̃g̃ final states, respectively, in the range of r we consider. Because of the

increasing importance of the threshold region, the corrections in general become larger for

increasing sparticle masses. The strong r-dependence of KNLL for gluino-pair production

in figure 2b is driven by the r-dependence of the NLO cross sections for qq̄ → g̃g̃. The

large effect of soft-gluon resummation for q̃g̃ and g̃g̃ production can be mostly attributed

to the importance of gluon initial states for these processes. Furthermore, the presence
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of gluinos in the final state results in enhancement of the NLL contributions [27], since in

this case the Casimir invariants that enter eq. (2.8) reach higher values than for processes

involving only squarks. The substantial value of KNLL for q̃q̃ production at the Tevatron

is a consequence of the behaviour of the corresponding NLO corrections, which strongly

decrease with increasing squark mass [16].

We now turn to the discussion of pair production of squarks and gluinos at the LHC,

i.e. pp → q̃ ¯̃q, q̃q̃, q̃g̃, g̃g̃ + X. The results for the processes pp → q̃ ¯̃q and pp → g̃g̃ agree with

those presented in refs. [26, 27], while the predictions for pp → q̃q̃ and pp → q̃g̃ are new. In

figure 3 the cross sections are shown for squark and gluino masses mq̃ = mg̃ = m = 1 TeV as

a function of the common renormalization and factorization scale µ. The scale uncertainty

of the theoretical prediction is reduced at NLL+NLO. Similarly to the Tevatron case,

soft-gluon resummation is most significant for gluino-pair production and squark-gluino

production. For those processes, the relative K-factor KNLL − 1 reaches 35% for gluino-

pair production and 18% for squark-gluino production at the highest accessible sparticle

masses around 3TeV (see figures 4b and 4d). The r-dependence of KNLL for gluino-pair

production is again driven by the r-dependence of the NLO cross section, discussed in

ref. [16].

Representative values for the NLO and NLL+NLO cross sections at the Tevatron and

the LHC are collected in tables 1 and 2 for equal squark and gluino masses.

The impact of the NLL resummation on the cross section for inclusive squark and

gluino production, i.e. pp̄/pp → q̃ ¯̃q+ q̃q̃+ q̃g̃+ g̃g̃+X, can be inferred from the inclusive K-

factor displayed in figure 5. The pattern exhibited in figure 5 can be understood from the

relative importance of the q̃ ¯̃q, q̃q̃, q̃g̃ and g̃g̃ final states and from their individual K-factors

as shown in figures 2 and 4. At mq̃ = mg̃ ≈ 400 GeV, for example, the inclusive cross

section at the Tevatron (figure 5a) is built up from the individual final states in the ratio

q̃q̃ : g̃g̃ : q̃g̃ : q̃ ¯̃q ≈ 1 : 3.6 : 14 : 32, as can be read off from table 1. Owing to the large NLL

corrections for the q̃g̃ final state, the resulting inclusive K-factor KNLL is approximately 1.1.

At mq̃ = mg̃ = 600 GeV the correction to the inclusive cross section at the Tevatron due

to NLL resummation can be as high as 18%. The inclusive corrections are smaller at the

LHC for sparticle masses below 3TeV (see figure 5b). Given the sparticle mass ranges that

we consider, this is consistent with the fact that the distance from threshold, i.e. the value

of the variable 1 − ρ = 1 − 4m2/S, is on average larger at the LHC than at the Tevatron.

In figures 6a and 6b we show for the Tevatron and LHC, respectively, the resummed

NLL+NLO total cross section for inclusive squark and gluino production as a function of

the average sparticle mass m. For illustration we show these results for the choice mq̃ = mg̃.

The error bands indicate the theoretical uncertainty of the NLL+NLO total cross section

due to the scale variation in the range m/2 ≤ µ ≤ 2m. The results presented in figure 6

are the most accurate theoretical predictions currently available for the above processes.

The reduction of the theoretical error due to variation of the common factorization and

renormalization scale µ between µ = m/2 and µ = 2m is illustrated in figure 7a for the

Tevatron and in figure 7b for the LHC. Both at the Tevatron and at the LHC, soft-gluon

resummation leads to a significant reduction in this part of the theoretical uncertainty.

– 14 –



J
H
E
P
1
2
(
2
0
0
9
)
0
4
1

5 Conclusions

We have performed the NLL resummation of soft gluon emission for squark and gluino

hadroproduction. Explicit analytical results are presented for the anomalous dimension

matrices and the colour-decomposed LO cross sections in x and N -space for the q̃q̃ and q̃g̃

final states. We provide NLO+NLL matched numerical predictions for all pair-production

processes of coloured sparticles at the Tevatron and the LHC. The NLL corrections lead

to a significant reduction of the scale dependence and, in general, increase the NLO cross

sections. The effect of soft-gluon resummation is most pronounced for processes with

initial-state gluons and final-state gluinos, which involve a large colour charge. Specifi-

cally, at the Tevatron we find an increase of the cross-section prediction of up to 40% at

sparticle masses around 500 GeV when going from NLO to NLL+NLO, depending in de-

tail on the final state and the ratio of squark to gluino masses. For the inclusive sparticle

cross section at the Tevatron, summed over all pair-production processes for squarks and

gluinos, the enhancement can be as large as approximately 15% in the mass range up to

500 GeV, probed by current experimental searches. At the LHC, the NLL corrections are

particularly significant for squark-gluino production and gluino-pair production, reaching

approximately 20% and 30%, respectively, for sparticle masses around 3 TeV. Both at the

Tevatron and at the LHC, the inclusion of NLL corrections leads to a reduction of the scale

dependence over the full mass range that will be probed by experiments. In addition, the

NLL corrections lead to a significant enhancement of the NLO cross-section predictions for

heavy sparticles. The NLL+NLO matched predictions presented in this paper should thus

be used to interpret current and future searches for supersymmetry at the Tevatron and

the LHC.
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(a)

NLO
NLL + NLO

σ ( pp̄ → q̃¯̃q + X ) [fb]
√

S = 1.96TeV

µ0 = m = 500GeV

µ/µ0

5210.50.20.1

4.5

4.0

3.5

3.0

2.5

2.0

1.5

1.0

(b)

NLO
NLL + NLO

σ ( pp̄ → g̃g̃ + X ) [fb]
√

S = 1.96TeV

µ0 = m = 500GeV

µ/µ0

5210.50.20.1

0.28

0.26

0.24

0.22

0.20

0.18

0.16

0.14

0.12

0.10

(c)

NLO
NLL + NLO

σ ( pp̄ → q̃q̃ + X ) [fb]
√

S = 1.96TeV
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Figure 1. The scale dependence of the NLL+NLO and the NLO total cross sections for squark

and gluino pair-production processes at the Tevatron. The squark and gluino masses have been set

to mq̃ = mg̃ = m = 500GeV.
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Figure 2. The relative NLL K-factor KNLL − 1 = σNLL+NLO/σNLO − 1 for squark and gluino

pair-production processes at the Tevatron as a function of the average sparticle mass m. Shown are

results for various mass ratios r = mg̃/mq̃.
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Figure 3. The scale dependence of the NLL+NLO and the NLO total cross sections for squark

and gluino pair-production processes at the LHC. The squark and gluino masses have been set to

mq̃ = mg̃ = m = 1TeV.

– 18 –



J
H
E
P
1
2
(
2
0
0
9
)
0
4
1

(a)

r=1.0
r=0.8
r=0.5
r=2.0

KNLL − 1 ( pp → q̃¯̃q + X )
√

S = 14TeV

r =
mg̃

mq̃

µ = m

m[GeV]

30002500200015001000500

0.08

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.00

(b)

r=2.0
r=0.5
r=0.8
r=1.0

KNLL − 1 ( pp → g̃g̃ + X )
√

S = 14TeV

r =
mg̃

mq̃

µ = m

m[GeV]

30002500200015001000500

0.35

0.30

0.25

0.20

0.15

0.10

0.05

0.00

(c)

r=0.5
r=0.8
r=1.0
r=2.0

KNLL − 1 ( pp → q̃q̃ + X )
√

S = 14TeV

r =
mg̃

mq̃

µ = m

m[GeV]

30002500200015001000500

0.07

0.06

0.05

0.04

0.03

0.02

0.01

0.00

(d)

r=0.5
r=0.8
r=1.0
r=2.0

KNLL − 1 ( pp → q̃g̃ + X )
√

S = 14TeV

r =
mg̃

mq̃

µ = m

m[GeV]

30002500200015001000500

0.20

0.18

0.16

0.14

0.12

0.10

0.08

0.06

0.04

0.02

0.00

Figure 4. The relative NLL K-factor KNLL − 1 = σNLL+NLO/σNLO − 1 for squark and gluino

pair-production processes at the LHC as a function of the average sparticle mass m. Shown are

results for various mass ratios r = mg̃/mq̃.
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Figure 5. The relative NLL K-factor KNLL − 1 = σNLL+NLO/σNLO − 1 for the inclusive squark

and gluino pair-production cross section, pp̄/pp → q̃q̃ + q̃ ¯̃q + q̃g̃ + g̃g̃ + X , at the Tevatron (a) and

the LHC (b) as a function of the average sparticle mass m. Shown are results for various mass

ratios r = mg̃/mq̃.

(a)

NLL + NLO, µ = m
NLL + NLO, 1

2
m ≤ µ ≤ 2m

√
S = 1.96TeV

σ ( pp̄ → q̃¯̃q + g̃g̃ + q̃q̃ + q̃g̃ + X ) [pb]

m[GeV]

600550500450400350300250200

102

101

100

10−1

10−2

10−3

10−4

(b)

NLL + NLO, µ = m
NLL + NLO, 1

2
m ≤ µ ≤ 2m

√
S = 14TeV

σ ( pp → q̃¯̃q + g̃g̃ + q̃q̃ + q̃g̃ + X ) [pb]

m[GeV]

30002500200015001000500

105

104

103

102

101

100

10−1

10−2

10−3

10−4

Figure 6. The NLL+NLO cross section for inclusive squark and gluino pair-production, pp̄/pp →
q̃q̃ + q̃ ¯̃q + q̃g̃ + g̃g̃ + X , at the Tevatron (a) and the LHC (b) as a function of the average sparticle

mass m. Shown are results for the mass ratio r = mg̃/mq̃ = 1. The error band corresponds to a

variation of the common renormalization and factorization scale in the range m/2 ≤ µ ≤ 2m.

A Leading-order N -space cross sections for q̃q̃ and q̃g̃ production

In this appendix we present the analytical results for the Mellin transforms of the LO

cross sections for q̃q̃ and q̃g̃ production. The cross sections are colour-decomposed in

SU(3) according to the procedure described in section 3. The Mellin-transformed LO cross

sections for the q̃ ¯̃q and g̃g̃ final states can be found in [27].

The expressions for the colour-decomposed LO N -space cross sections for the process
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Figure 7. Scale dependence of the NLL+NLO and NLO cross sections for inclusive squark and

gluino pair-production, pp̄/pp → q̃q̃ + q̃ ¯̃q + q̃g̃ + g̃g̃ + X , at the Tevatron (a) and the LHC (b) as

a function of the average sparticle mass m. Shown are results for the mass ratio r = mg̃/mq̃ = 1.

The upper two curves correspond to the common renormalization and factorization scale set to

µ = m/2, the lower two curves to µ = 2m.

qf1qf2 → q̃q̃ are given by

σ̃
(0)
qq→q̃q̃,1(N) =

α2
sπ

27m2
q̃

[

− δf1f2HN − 4BNGN

2N + 3

(

N +
2r2

r2 + 1

1

N + 2

)

+ 2BN
N2 + 2N + 2

(N + 1)(N + 2)

]

, (A.1)

σ̃
(0)
qq→q̃q̃,2(N) =

α2
sπ

27m2
q̃

[

δf1f2

HN

2
− 2BNGN

2N + 3

(

N +
2r2

r2 + 1

1

N + 2

)

+ BN
N2 + 2N + 2

(N + 1)(N + 2)

]

, (A.2)

whereas for the process qg → q̃g̃ they read

σ̃
(0)
qg→q̃g̃,1(N) =

α2
sπ

8m2
q̃

[

9BN+1P
−
N+1(1 − r)

(r + 1)3
− 9BNP−

N

2(r + 1)2
+

BN+2P
−
N+2(7r

2 − 9)(1 − r)

(r + 1)5

+
BN+1P

+
N+1(1 − r)

9(r + 1)3
−

BN+2P
+
N+2(r

2 + 17)(1 − r)

9(r + 1)5

+
130BN+1KN+1(1 − r)

9(r + 1)3
− 56BNKN

9(r + 1)2

]

, (A.3)

σ̃
(0)
qg→q̃g̃,2(N) =

α2
sπ

8m2
q̃

[

2BN+1P
−
N+1(1 − r)

(r + 1)3
− BNP−

N

(r + 1)2
−

2BN+2P
−
N+2(r

2 + 1)(1 − r)

(r + 1)5

+
2BN+1P

+
N+1(1 − r)

(r + 1)3
−

2BN+2P
+
N+2(r

2 + 1)(1 − r)

(r + 1)5

+
4BN+1KN+1(1 − r)

(r + 1)3

]

, (A.4)

σ̃
(0)
qg→q̃g̃,3(N) =

5

2
σ̃

(0)
qg→q̃g̃,2(N) . (A.5)
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pp̄ → q̃ ¯̃q at
√

S = 1.96TeV (r=1.0)

mq̃ [GeV] 200 300 400 500 600

σNLO [pb] 1.28 × 101 7.35 × 10−1 4.70 × 10−2 2.59 × 10−3 9.79 × 10−5

σNLL+NLO [pb] 1.30 × 101 7.55 × 10−1 4.91 × 10−2 2.77 × 10−3 1.09 × 10−4

KNLL − 1 0.016 0.026 0.045 0.071 0.11

pp̄ → g̃g̃ at
√

S = 1.96TeV (r=1.0)

mg̃ [GeV] 200 300 400 500 600

σNLO [pb] 3.72 1.07 × 10−1 4.61 × 10−3 1.96 × 10−4 6.01 × 10−6

σNLL+NLO [pb] 4.24 1.24 × 10−1 5.47 × 10−3 2.38 × 10−4 7.62 × 10−6

KNLL − 1 0.14 0.17 0.19 0.22 0.27

pp̄ → q̃q̃ at
√

S = 1.96TeV (r=1.0)

mq̃ [GeV] 200 300 400 500 600

σNLO [pb] 1.81 4.78 × 10−2 1.39 × 10−3 3.38 × 10−5 5.66 × 10−7

σNLL+NLO [pb] 1.87 5.09 × 10−2 1.54 × 10−3 3.95 × 10−5 7.06 × 10−7

KNLL − 1 0.033 0.064 0.11 0.17 0.25

pp̄ → q̃g̃ at
√

S = 1.96TeV (r=1.0)

m [GeV] 200 300 400 500 600

σNLO [pb] 1.43 × 101 4.44 × 10−1 1.71 × 10−2 5.98 × 10−4 1.46 × 10−5

σNLL+NLO [pb] 1.54 × 101 5.03 × 10−1 2.09 × 10−2 8.05 × 10−4 2.27 × 10−5

KNLL − 1 0.075 0.13 0.22 0.35 0.55

Table 1. The NLL+NLO and NLO cross sections for the squark and gluino pair-production

processes at the Tevatron. Shown are results for the mass ratio r = mg̃/mq̃ = 1. The common

renormalization and factorization scale has been set to m.

We have used the following abbreviations:

BN ≡ β(N + 1, 1/2),

GN ≡ 2F1

(

1, 1/2, N + 5/2,

(

r2 − 1

r2 + 1

)2
)

,

P±
N ≡ −1

N + 1
2F1

(

1/2, N + 1, N + 3/2,

(

1 − r

1 + r

)2
)

±
(

1 − r

r + 1

)

1

N + 3/2
2F1

(

1/2, N + 2, N + 5/2,

(

1 − r

1 + r

)2
)

,

KN ≡ 1

2N + 3
2F1

(

−1/2, N + 1, N + 5/2,

(

1 − r

1 + r

)2
)

,

HN ≡
∫ 1

0
dz

zN+1

1
r2 −

(

1−r2

2r2

)

z
log

(

2(1 +
√

1 − z) + (r2 − 1)z

2(1 −
√

1 − z) + (r2 − 1)z

)

, (A.6)

with 2F1(λ, µ, ν, ξ) the hypergeometric function, β(µ, ν) the beta function and r = mg̃/mq̃.
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pp → q̃ ¯̃q at
√

S = 14TeV (r=1.0)

mq̃ [GeV] 200 500 1000 2000 3000

σNLO [pb] 1.30 × 103 1.60 × 101 2.89 × 10−1 1.11 × 10−3 7.13 × 10−6

σNLL+NLO [pb] 1.31 × 103 1.61 × 101 2.93 × 10−1 1.14 × 10−3 7.59 × 10−6

KNLL − 1 0.010 0.012 0.017 0.034 0.064

pp → g̃g̃ at
√

S = 14TeV (r=1.0)

mg̃ [GeV] 200 500 1000 2000 3000

σNLO [pb] 3.74 × 103 2.85 × 101 2.92 × 10−1 5.82 × 10−4 2.68 × 10−6

σNLL+NLO [pb] 3.86 × 103 3.00 × 101 3.18 × 10−1 6.91 × 10−4 3.62 × 10−6

KNLL − 1 0.033 0.054 0.089 0.19 0.35

pp → q̃q̃ at
√

S = 14TeV (r=1.0)

mq̃ [GeV] 200 500 1000 2000 3000

σNLO [pb] 5.45 × 102 1.34 × 101 5.28 × 10−1 6.48 × 10−3 1.18 × 10−4

σNLL+NLO [pb] 5.46 × 102 1.34 × 101 5.32 × 10−1 6.64 × 10−3 1.25 × 10−4

KNLL − 1 0.003 0.004 0.008 0.024 0.056

pp → q̃g̃ at
√

S = 14TeV (r=1.0)

m [GeV] 200 500 1000 2000 3000

σNLO [pb] 4.86 × 103 6.55 × 101 1.22 5.49 × 10−3 4.96 × 10−5

σNLL+NLO [pb] 4.92 × 103 6.69 × 101 1.26 5.96 × 10−3 5.80 × 10−5

KNLL − 1 0.013 0.021 0.037 0.085 0.17

Table 2. The NLL+NLO and NLO cross sections for the squark and gluino pair-production

processes at the LHC. Shown are results for the mass ratio r = mg̃/mq̃ = 1. The common renor-

malization and factorization scale has been set to m.

For the numerical evaluation of HN we use the expansion

HN =
2r2

1 + r2

∞
∑

m=0

(

r2 − 1

1 + r2

)m
1

1 + m

m
∑

k=0

(−1)k

β (k + 1,m − k + 1)

×
[

β (k + N + 2, 1/2)

k + N + 2
− 2

(

r2 − 1

1 + r2

)

β (k + N + 2, 3/2)

2F1

(

1, 1/2, k + N + 7/2,

(

1 − r2

1 + r2

)2
)]

. (A.7)

B Construction of the s-channel colour basis: an example

For the process qq → q̃q̃ we explicitly show how to derive the s-channel colour basis given

in eq. (3.9). The same steps can be used to obtain the basis given in eq. (3.11) for the

qg → q̃g̃ process, although the calculations are more tedious in that case.

As a starting point we take the colour structures that occur in the LO qq → q̃q̃ process

– 23 –



J
H
E
P
1
2
(
2
0
0
9
)
0
4
1

a2

a3

a4

a1 T c
a3a1

T c
a4a2

c

a2

a4

a3

a1 T c
a4a1

T c
a3a2

c

Figure 8. The LO diagrams that contribute to squark-pair production.
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Figure 9. An example of gluon insertion.

displayed in figure 8. Using the conventions introduced in section 3.1 these are:

T c
a3a1

T c
a4a2

=
1

2

(

δa3a2δa4a1 −
1

N
C

δa3a1δa4a2

)

,

T c
a3a2

T c
a4a1

=
1

2

(

δa3a1δa4a2 −
1

N
C

δa3a2δa4a2

)

,

where c is a summation index in the adjoint representation. For convenience these colour

structures have been rewritten in terms of the t and u-channel singlet structures δa3a1δa4a2

and δa3a2δa4a1 . It is clear from this expression that two independent singlet structures

occur. Since the two-particle reducible product representation 3 ⊗ 3 contains two irre-

ducible representations, cf. eq. (3.6), this basis must be complete. That means that the

s-channel base tensors are linear combinations of these singlet structures. The projective

prescription (3.7) leads to the following set of equations:

(AIδba2δb′a1
+BIδba1δb′a2

)(AI′δa3b′δa4b+BI′δa3bδa4b′) = ZδII′(AIδa3a2δa4a1 +BIδa3a1δa4a2) ,

where I, I ′ ∈ {1, 2} and Z is an arbitrary normalization constant. Working out the equa-

tions shows that up to interchanging the base tensors the unique solution is given by

A1 = −A2 = B1 = B2 = Z/2, which is exactly the basis given in eq. (3.9).

One can check explicitly that this basis is complete for gluon resummation: repre-

senting the combined colour structure of the external particles by one of the base tensors

cI and connecting any two external particles by an additional gluon yields no additional

colour structures. In figure 9 an example of such a gluon insertion is shown. For processes

for which the LO colour basis is not complete, this procedure can also be used to identify

additional base tensors.

If a particle is exchanged in the s-channel, the corresponding base tensor has a direct

physical interpretation. An example is the Feynman diagram for the qg → q̃g̃ process
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Figure 10. Example of a diagram corresponding to a base tensor.

shown in figure 10. Since the quark exchanged in the s-channel is in the fundamental

representation, the corresponding N
C
-dimensional base tensor (cqg

1 in eq. (3.11)) can be

read off immediately from the colour structure of this diagram.

C Eikonal Feynman rules

In this appendix the eikonal Feynman rules will be given for a soft gluon with momentum

k attached to an eikonal line with momentum p. In the eikonal approximation we have

k ≪ p, which leads to simple Feynman rules since the propagator that connects the matrix

element to the radiated gluon becomes effectively on-shell. The generic diagrams and their

corresponding Feynman rules are given by (cf. [41])

p

k

a
b

µ, c

= gs(T
c
R)ab

pµ

p · k − iǫ

p

b (C.1)

for an incoming eikonal line and

p

k

b
a

µ, c

= gs(T
c
R)ab

pµ

p · k + iǫ

p

b (C.2)

for an outgoing eikonal line. Here gs is the strong coupling constant, µ is the Lorentz

index of the gluon and iǫ represents the infinitesimal imaginary part of the propagator

that connects the matrix element to the radiated gluon. The colour labels of the different

particles are denoted by a, b and c. The representation of the eikonal line is denoted by

R. We have R = F for the fundamental representation, R = F̄ for the charge conjugate

of the fundamental representation, and R = A for the adjoint representation. The colour

operators occurring in eqs. (C.1) and (C.2) are given in table 3. Note that the order of the

colour indices a, b, c in fabc is kept fixed irrespective of whether the gluon is emitted above

or below the eikonal line.

D One-loop eikonal integral for q̃g̃ production

We briefly present here the calculation of the kinematic part ω34 of the one-loop correction

to the process qg → q̃g̃ in the eikonal approximation. The equal-mass case of ω34 is well

known [41], but for q̃g̃ final states we also need the unequal-mass version.
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Outgoing (s)quark / incoming anti-(s)quark: (T c
F )ab = T c

ab

Outgoing anti-(s)quark / incoming (s)quark: (T c
F̄
)ab = −T c

ba = −(T c
ab)

∗

Gluons / gluinos: (T c
A)ab = F c

ab = −ifabc

Table 3. Colour operators used in the eikonal Feynman rules.

The kinematic part of the one-loop correction generated by the exchange of a virtual

gluon between the two final-state eikonal lines is according to eq. (C.2) given by

ω34 = g2
s

∫

ddk

(2π)d

(

v3

v3 · k + iǫ

)

·
(

v4

−v4 · k + iǫ

) −i

(k2 + iǫ)
Nµν(k) . (D.1)

We use dimensionless vectors vµ
i = pµ

i

√

2/s with pi denoting the momentum of the massive

external particle i. We calculate the gluon propagator in a general axial gauge with

Nµν(k) = gµν − nµkν + kµnν

n · k + n2 kµkν

(n · k)2
, (D.2)

where nµ is a general gauge vector with n2 < 0. In the case that v2
3,4 > 0 and v2

3 6= v2
4 the

solution of the integral ω34 reads

ω34 = −αs

πǫ
[Lv3,v4 + Lv3 + Lv4 − 1] , (D.3)

with ǫ = 4 − d. The gauge-independent term Lv3,v4 is given by

Lv3,v4 =
1

2

v3 · v4
√

(v3 · v4)2 − v2
3v

2
4

[

2iπ + log

(

v2
4 + v3 · v4 −

√

(v3 · v4)2 − v2
3v

2
4

v2
4 + v3 · v4 +

√

(v3 · v4)2 − v2
3v

2
4

)

+ log

(

v2
3 + v3 · v4 −

√

(v3 · v4)2 − v2
3v

2
4

v2
3 + v3 · v4 +

√

(v3 · v4)2 − v2
3v

2
4

)]

. (D.4)

The gauge-dependent terms Lv3 and Lv4 can be found in ref. [41] and cancel against

contributions from the self-energy diagrams when calculating the anomalous dimensions.

The gauge-independent term Lv3,v4 can be rewritten in a compact form using β and κ as

defined in eqs. (2.2) and (3.4):

Lv3,v4 =
κ2 + β2

2κβ

[

log

(

κ − β

κ + β

)

+ iπ

]

. (D.5)

For equal-mass final-state particles this quantity reduces to the well-known form (cf. [27])

Lβ =
1 + β2

2β

[

log

(

1 − β

1 + β

)

+ iπ

]

.
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